推广 热搜: 京东  联通  iphone11  摄像头  企业存储  XSKY  京东智能采购  iPhone  网络安全  自动驾驶 

1.2万亿参数:谷歌通用稀疏语言模型GLaM,小样本学习打败GPT-3

   日期:2021-12-15     来源:51cto    作者:itcg    浏览:236    我要评论    
导读:WOT全球技术创新大会2022,门票6折抢购中!购票立减2320元!  

WOT全球技术创新大会2022,门票6折抢购中!购票立减2320元!

 政府采购

近几年,我们已经看到模型规模越来越大,例如 2018 年诞生的 GPT 具有 1.17 亿参数,时隔一年,2019 年 GPT-2 参数量达到 15 亿,2020 年更是将其扩展到 1750 亿参数的 GPT-3。据了解,OpenAI 打造的超级计算机拥有 285000 个 CPU 核以及 10000 个 GPU,供 OpenAI 在上面训练所有的 AI 模型。

大型语言模型虽然训练昂贵,但也有其重要的一面,例如可以在各种任务中执行小样本学习,包括阅读理解、问答。虽然这些模型可以通过简单地使用更多参数来获得更好的性能。但是有没有方法可以更有效地训练和使用这些模型呢?

为了回答这个问题,谷歌推出了具有万亿权重的通用语言模型 (Generalist Language Model,GLaM),该模型的一大特点就是具有稀疏性,可以高效地进行训练和服务(在计算和资源使用方面),并在多个小样本学习任务上取得有竞争力的性能。

我们来看一下 GLaM 模型的具体情况。

数据集

谷歌首先构建了一个高质量的、具有 1.6 万亿 token 的数据集,该无标签数据集很大一部分来自 Web 页面,其范围从专业写作到低质量的评论和论坛页面。此外,谷歌还开发了一个文本质量过滤器,该过滤器是在维基百科和书籍文本数据集上训练而成,由于过滤器训练的数据集质量很高,所以谷歌将其过滤 Web 网页内容的质量。最后,谷歌应用这个过滤器来生成 Web 网页的最终子集,并将其与书籍和维基百科数据相结合来创建最终的训练数据集。

GLaM 模型架构

GLaM 是混合专家模型 (MoE) ,这种模型可以被认为具有不同的子模型(或专家),每个子模型都专门用于不同的输入。每一层的专家由一个门控网络控制,该门控网络根据输入数据激活专家。对于每个 token(通常是一个词或词的一部分),门控网络选择两个最合适的专家来处理数据。完整的 GLaM 总共有 1.2T 参数,每个 MoE 包含 64 个专家,总共 32 个 MoE 层,但在推理期间,模型只会激活 97B 的参数,占总参数的 8%。

政府采购

GLaM 的体系架构,每个输入 token 都被动态路由到从 64 个专家网络中选择的两个专家网络中进行预测。

与 GShard MoE Transformer 类似,谷歌用 MoE 层替换其他 transformer 层的单个前馈网络(人工神经网络最简单的一层,如上图蓝色方框中的 Feedforward 或 FFN)。MoE 层有多个专家,每个专家都是具有相同架构但不同权重参数的前馈网络。

尽管 MoE 层有很多参数,但专家是稀疏激活的,这意味着对于给定的输入 token,只使用两个专家,这样做的优势是在限制计算的同时给模型提供更多的容量。在训练期间,每个 MoE 层门控网络都经过训练,使用它的输入来激活每个 token 的最佳两位专家,然后将其用于推理。对于 MoE 层的 E 专家来说,这本质上提供了 E×(E-1) 个不同前馈网络组合的集合,而不是经典 Transformer 中的一个组合,从而带来更大的计算灵活性。

最终学习到的 token 表示来自两个专家输出的加权组合,这使得不同的专家可以激活不同类型的输入。为了能够扩展到更大的模型,GLaM 架构中的每个专家都可以跨越多个计算设备。谷歌使用 GSPMD 编译器后端来解决扩展专家的挑战,并训练了多个变体(基于专家规模和专家数量)来了解稀疏激活语言模型的扩展效果。

评估设置

谷歌使用 zero-shot 和 one-shot 两种设置,其中训练中使用的是未见过的任务。评估基准包括如下:

完形填空和完成任务; 开放域问答; Winograd-style 任务; 常识推理; 上下文阅读理解; SuperGLUE 任务; 自然语言推理。

谷歌一共使用了 8 项自然语言生成(NLG)任务,其中生成的短语基于真值目标进行评估(以 Exact Match 和 F1 measure 为指标),以及 21 项自然语言理解(NLU)任务,其中几个 options 中的预测通过条件对数似然来选择。

实验结果

当每个 MoE 层只有一个专家时,GLaM 缩减为一个基于 Transformer 的基础密集模型架构。在所有试验中,谷歌使用「基础密集模型大小 / 每个 MoE 层的专家数量」来描述 GLaM 模型。比如,1B/64E 表示是 1B 参数的密集模型架构,每隔一层由 64 个专家 MoE 层代替。

谷歌测试了 GLaM 的性能和扩展属性,包括在相同数据集上训练的基线密集模型。与最近微软联合英伟达推出的 Megatron-Turing 相比,GLaM 使用 5% margin 时在 7 项不同的任务上实现了不相上下的性能,同时推理过程中使用的算力减少了 4/5。

此外,在推理过程中使用算力更少的情况下,1.2T 参数的稀疏激活模型(GLaM)在更多任务上实现了比 1.75B 参数的密集 GPT-3 模型更好的平均结果。

1.2万亿参数:谷歌通用稀疏语言模型GLaM,小样本学习打败GPT-3

NLG(左)和 NLU(右)任务上,GLaM 和 GPT-3 的平均得分(越高越好)。

谷歌总结了 29 个基准上,GLaM 与 GPT-3 的性能比较结果。结果显示,GLaM 在 80% 左右的 zero-shot 任务和 90% 左右的 one-shot 任务上超越或持平 GPT-3 的性能。

1.2万亿参数:谷歌通用稀疏语言模型GLaM,小样本学习打败GPT-3

此外,虽然完整版 GLaM 有 1.2T 的总参数,但在推理过程中每个 token 仅激活 97B 参数(1.2T 的 8%)的子网。

1.2万亿参数:谷歌通用稀疏语言模型GLaM,小样本学习打败GPT-3

 
反对 0举报 0 收藏 0 打赏 0评论 0
 
更多>同类资讯

头条阅读
推荐图文
相关资讯
网站首页  |  物流配送  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  RSS订阅  |  违规举报  |  京ICP备14047533号-2
Processed in 0.032 second(s), 11 queries, Memory 0.46 M